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1. INTRODUCTION 

TH~P, NOTE is intended to illustrate the application to 
radiative transfer of a method which has enjoyed great 
success in the related area of neutron transport theory. 
Basically, the method involves the construction of a com- 
plete set of eigenfunctions of the homogeneous transport 
equation in terms of which any other solution may be 
expanded. Sources and boundary conditions determine 
the coefficients in the expansion. This method, originally 
developed by Case [l], is quite analogous to the classical 
approach used in heat conduction problems. The only 
major difference is that the “eigenfunctions” are generalized 
functions in the sense of Schwartz [2], e.g. they are not 
square integrable in the ordinary sense. 

Here we show how the method may be applied to the 
simple case of radiative transfer in grey gases (or, equiva- 
lently, in a gas with purely isotropic scattering) in plane 
geometry. As an example, we solve the problem of heat 
transfer between parallel plates at arbitrary temperatures 
and with arbitrary emissivities. As a result of this analysis 
one obtains very accurate approximate formulae for the 
heat transfer and temperature distribution; these are of the 
same form as those obtained by a different method by 
Heaslet and Warming [3]. From these results one is also 
able to infer how the boundary conditions in the diffusion 
approximation might be modified to give improved results 
in other geometries. 

Usiskin and Sparrow [4] obtained one of the first solu- 
tions of the parallel plate probiem by numerical methods. 
Other authors have since considered specific aspects of this 
problem. (Heaslet and Warming [3] reference many of 
these papers.) For example, Olfe and Penner [S}, and 
Probstein [6] have concerned themselves with improving 
the boundary conditions in the diffusion approximation. 
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2. REDUCTION TO THE ALBEDO PROBLEM 

The first problem to be considered is posed as follows: 
Determine the radiation intensity I(x, n) in a region con- 
taining a grey absorbing (and emitting) gas bounded by two 
black plates at temperatures Tr and T,. 

For the case of a grey gas in radiative and local thermo- 
dynamic equilibrium the steady state one-dimensional 
equation of transfer is [7,8] : 

where x is a dimensionless variable (xz) and I(x, p) is the 
integrated (over frequency) intensity. This equation also 
applies to the case of a non-absorbing, non-emitting gas 
with perfect isotropic scattering [8] (or a combination of 
grey absorption and isotropic scattering). 

For the case of black boundaries, the boundary conditions 
to be applied to equation (1) are 

(P ’ 0) 

(2) 

(P < 0) 

where d is the dimensionless distance between the plates. 
These equations define fr and h. In order to be entirely 
genera1 (and for later application) we will allow fr and f2 
to be functions of I”, i.e. we will allow the surfaces to be non- 
diffuse. 

It is sufficient to consider the problem in which fi = 0 
and fi = f(p) since the solution of the original problem can 
be constructed from the solutions I,(x,p) and I,(x,p) 
corresponding toJ(p) = fi(p) and f (p) = fi( -p): 

I(x,/4 = 1,(x,/l) + I,(-% -@). (3) 

This problem is essentially the slab albedo problem of 
one-speed neutron transport theory which was considered 
by McCormick and Mendelson [9]. 
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3. USE OF CASE’S METHOD where [9] 

Case [l] developed a method for treating one-dimensional 
neutron transport problems which uses an expansion in the 
(singular) eigenfunctions of the Boltzmann equation. He 
proved that the set of eigenfunctions of the Boltzmann 
equation that he derived is complete and orthogonal for 
pc( - 1, I), and that a truncated set is complete for &O, 1). 

B, (k) = [A(k) + A( - k)] ed”li, YW = tL 
X(-N 

and 

Since the Boltzmann equation, (I), is precisely the one- 
speed neutron transport equation which Case considered, 
Case’s method is applicable to the present problem. Thus 
we can always expand I(x,p) in terms of Case’s 
functions 

1(x, P) = a + b(x - p) + J! A(k) q&j eMXjk dk 
-1 

where rp,(p) is the continuum eigenfunction of Case : 

k 
cph) = fP ___ 

k--P 
+ I(k) 6(fi - k) 

and 

J.(k) = 1 - k tanh-‘ k. 

eigen- 

(4) 

(5) 

(6) 

The P indicates that singular integrals are to be evaluated 
in the Cauchy principal value sense. The problem is to 
choose a, b and A(k) in such a way that the boundary 
conditions are satisfied exactly. 

If we apply the boundary conditions to the expansion (4), 
follow McCormick and Mendelson’s [9] method for 
adding and subtracting the two equations, use the half-range 
orthogonality relations of Kuscer, McCormick, and Sum- 
mertield [lo] and a result of Shure and Natelson [l l] then 
we obtain the following equations for the expansion 
coefficients : 

a=ijy(p)/(p)dp-$ikB+(k)e-“!‘X(-k)dk (7) 
0 0 

1 1 

-1 
b=- 

d + 22, [s 
r(p)f(p) dp + f 

I 
k B_(k) emd’lr X(-k) dk 1 0 0 h 

1 

Y(/J) cp,Mf(~) dp = : 
k’ 

g(1. k’) X(-k) 
B+(k’) + 

0 

k 
---X(-k)dk 
k + k’ 

1 

s 
Y(P) cp,@)SW dp = bk’ + : 

k 

g(1, k’) X(-k’) B-(k’) 
0 

1 

- : B_(k) e-“lk 
s 

k 
---X(-k)dk 
k + k’ 

0 

(11) 

(12) 

and z0 is the Milne problem extrapolation length (0.710446) 
[ll, 121. 

Equations (9) and (10) are Fredholm (ordinary) integral 
equations for the coefficients B,(k) while equations (7) and 
(8) are side conditions that determine a and b. At first sight 
these equations look very complicated but we will show 
that the integral terms are small and can be neglected for 
most applications. The expansion coefficients can be 
determined from (7HlO) to any degree of accuracy desired. 

The use of these equations is best illustrated by an 
example for which the solution is well known. We will 
consider the diffuse case, i.e. fi(p) =f= a constant. With 
no loss of generality we choose f= 1. The quantities 
associated with this problem will be denoted by a zero 
subscript, e.g. 1,(x, p). 

For this case it can be shown that Bo+ = 0 and aa = ). 
We may now obtain the coefficients b. and B,,_(k) from 

equations (8) and (10). Although numerical solution is not 
difficult, the smallness of the integral terms in these equations 
leads to a rapidly convergent (and simple) iterative solution. 
A first approximation is to neglect the integrals entirely, 
i.e. 

bb” = 
-1 ___ 

d + 22, 

Bb”(k’) = - +bb” g(1. k’) X(-k’). (14) 

The second approximation is obtained by the usual iteration 
procedure for equations of this type. 

We now define 

p(x) = 271 s’ 1(x, p) dp = 4uT;(x) 
-1 

= 2n [2a + 2bx + j! A(k) emX” dk] 
-1 

(15) 

where T, is the local temperature of the gas, and we have 
used the expansion (4). The p(x) belonging to the particular 
problem treated above (f, = l,f2 = 0) will be designated 

PO(X). 
Now, consider the problem of two black plates with 

radiation intensities J, and fi, where fi = a/aTf V; > 1;). 
The solution to this problem is readily seen to be : 

P(X) = 47rfi + (.fi - fz) PO(X). (16) 
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The heat transfer is easily computed. By definition : 
1 

4 = 2n 
5 

/11(.x, /L) dp = - ; b = - $ b,(T: - 7-i). 

-1 

Using the first approximation for b, we obtain 

4 
Cl)_4 u - 3---(7y - T$). 

(d + 2zo) 
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where 

(17) K = ; &--d/2, -p) dp = t Cl - bo(d - +,I 0 

+ j! A(k) e’d/2L 4 p’(p-&L) dp dk. (23) 
-I 0 

(18) We note that no approximations have been made in the 
derivation of (22). Equation (22) reduces to equation (18) 

This approximation is sufficiently accurate for many when c1 = tZ = 1. Furthermore, in the limit, d = 0, b, = 

engineering purposes and in particular for large optical - 2 and the integral term in equation (23) vanishes so that 
thicknesses. The maximum error occurs at d = 0 for which K = 0 and equation (22) reduces to a well-known result for 
equation (18) predicts q”’ = 0.938 u(TT - I$) which is non-black parallel plates separated by a transparent gas. 
only 6 per cent below the exact result. Numerical results are Neglecting the integral over A(k) in equation (23), and 
treated in greater detail in Section 6. using the first approximation for b, we obtain : 

(24) 

4. EXTENSIONS 

We now consider the case in which the walls both emit 
and reflect. The total energy leaving either plate is called 
the radiosity and includes both the emitted and the reflected 
radiation. The radiosities are 

R,(P) = t1fib4 + 2 s” I$( ‘I& --t Ic)I(--4% $1 W 
-1 

(P > 0) (19) 

R,(p) = Q.!&) + 2 1 I$ r,($ + !J) V/2, p’) d@ 
0 

(p < 0) (20) 

where r@’ + p) is the angular dependent reflectivity and 
L is the emissivity. 

For purposes of illustration we consider diffuse reflection, 
[r($ --* p) = I = 1 - c] and assume that fi and h are 
independent of p. In this case both R, and R, are indepen- 
dent ofp (on their respective ranges) so we have, immediately : 

4x, 14 = RJ,(x, /d + RJ,( - x, -P). (21) 

Substituting (21) into equations (19) and (20) and performing 
the required integrations gives two algebraic equations for 
the two unknowns R, and R,. These equations are readily 
solved. We write down only the result for the heat transfer: 

which is of the form obtained by Heaslet and Fuller [13]. 
This result is sufficiently accurate for engineering purposes ; 
numerical values are given in Section 6. 

A similar procedure can be used for the more general 
boundary conditions, in which 

(25) 

For N = 1 this leads to four separate problems for which 
the solutions are given by equations (7)-(10). Two of these 
solutions contain arbitrary constants which represent the 
integrals in (19) and (20). Substituting the solutions into 
the definitions of these constants yield two algebraic 
equations for the two unknown constants. Similarly, in the 
general case one gets a set of 2N algebraic equations for 
2N unknown constants. 

Specular (mirror) reflection requires separate treatment 
but is no more difticuh than the problem which has already 
been solved; however, it will not be treated here. 

As explained above, the solutions obtained are applicable 
to the case of isotropic scattering. For problems involving 
anisotropic scattering the solution may be found by a 
combination of the procedure used by Mika [14] and that 
presented here. A method of extending this procedure to 
time-dependent problems is given by Case [6]. 

5. THE DIFFUSION APPROXIMATION 

The diffusion approximation to the transport equation 
(1) and its solution in plane geometry are 

VP(X) = 0, p(x) = a + bx. (26) 
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Tuble 1 
-______ 

k 

090 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
@35 
040 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1XMI 

_ 

W-k) y(k) ~(1, k) 

1.7321 O+XXtO 1GOOO 
1.5274 0.0491 0.9988 
1.3932 01077 0.9953 
1.2873 0.1748 0.9894 
1.1994 0.2501 0.9811 
1.1244 0.3335 0.9703 
1.0594 0.4248 0.9570 
10021 0.5239 0.9409 
0.9513 0.6307 0.9220 
0.9056 0.7453 0.9001 
0.8644 @8676 0.8749 
0.8271 0.9975 0.8461 
0.7927 1.1351 0.8134 
0.7616 1.2802 0.776 1 
0.7327 1.4330 0.7335 
0.7061 1.5933 0.6845 
0.6813 1.7613 0.6274 
0.6583 1.9368 0.5595 
0.6368 2.1198 0.4752 
0.6168 2.3105 0.3604 
0.5979 2.5086 00000 

Within the framework of diffusion theory the heat fluxes 

to the right (+) and left (-) are given by [15] : 

q* (I) = $! T @p(x) (27) 

For the problem treated in Section 4 the diffusion theory 
boundary conditions are 

q+ (-d/2) = r,q- (-d/2) + nf,f, 

q- (d/2) = rzq+ (d/2) + n&. (28) 

Using equations (26) and (27). one easily obtains the coef- 

ficients a and b. 

The net heat transfer is simply 

4=4+ - q_ = -fVp= -b,3. (29) 

Substituting the value of b obtained by the above calculation, 

one has 

This is the equation (58a) of Heaslet and Warming [3], 
which we conclude must correspond to the diffusion 

approximation. We note that the solution indicates that 

the boundary conditions for the diffusion approximation 
could as well be formulated in terms of extrapolated 

boundaries as is done in nuclear reactor theory (i.e. that 

p = 4aT4 at a distance 3 from the boundary). Such a 

formulation is equivalent to the use of “slip” boundary 

conditions. We note that the first approximation (24) 

reduces to (30) if 22,( = 1.4208) is replaced by 4 (= 1.3333). 

Thus with the given boundary conditions, diffusion theory 

predicts the heat flow quite adequately. Essentially, diffusion 

theory gives the discrete terms in P(X) [i.e. the first two terms 

in equation (15)] fairly well but it fails to predict the con- 

tinuum (integral) term at all; thus it does not give the tem- 

perature distribution as accurately as the approximations 

given earlier. Numerical evidence for these conclusions is 

given in the next section. 

Since diffusion theory gives reasonably accurate results. 

and is extremely simple to use (note that equation (26) is 

just the steady state conduction equation) one would like 

to apply it to other geometries. The only difficulty is that 

due to curvature effects the boundary conditions (28) with 

equations (27) for q, are known to give poor results for 

1. 4 t 

Rod/us 

FIG. 1. Dimensionless extrapolation length z,, as a function 
of radius for spheres and cylinders (from Davison [ 161). 

other (e.g. cylindrical) geometries To some extent this can 

be corrected as follows. 

We note that diffusion theory would yield equation (18) 

for the heat transfer if in the boundary conditions the term 

Vp/6 were replaced by z0Vp/4. For other geometries it is 

reasonable to use these modified boundary conditions with 

z0 a function of the curvature of the boundaries. (This 

approximation is known to give good results in similar 

problems in neutron transport theory.) Approximate values 

of z,, for spheres and cylinders were given by Davison [16] 
and are included here as Fig. 1. Using this modified dif- 

fusion theory the radiation problems can be solved to good 
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approximation with the use of existing computer codes for 
conduction problems. 

6. NUMERICAL RESULTS 

The results of some sample calculations are now given 
in order to indicate the accuracy of the various approxima- 
tions. All errors are relative to exact solutions obtained by 
numerical methods. These are in precise agreement with the 
solutions of other authors. 

In Fig. 2 the relative errors in p,(x) are given for a rather 
unfavorable case (d = 0.1). The first approximation [equa- 
tions (13) and (14)] yields less than one per cent error 
whereas the second approximation is essentially exact 
(maximum error : 0.03 per cent). The diffusion theory results 
are worse than either of these approximations but are still 
quite good. It is to be noted that the error in T“ will be less 
than the error in p0 when both plates are at finite tempera- 
tures. 

6 

5 

“0 4 
X 

s I / 

Dffusim apprax 

/- 

0 0.1 0.2 0.3 0.4 0.5 

xd / 

FIG. 2. Relative error in p,(x) in various approximations 
for d = 0.1. Note that x = 0 corresponds to the center line 
and that the error at -x is the negative of the error at x. 

The error in the heat transfer rate in various approxima- 
tions for the case of two black walls is given in Fig. 3. In 
the first approximation the maximum error is 62 per cent; 
this is reduced by a factor of ten in the second approxima- 
tion. Diffusion theory accidentally gives the correct value at 
d = 0 but is worse than the first approximation ford > 0.5. 

In Fig. 4 similar results are given for the case of partially 
reflecting walls. These results are typical of a large number of 
cases that were run. Diffusion theory [equation (30)] is 

6- 

5- 

4- 

3- 

2- 

Second opprox 

O- 

I I I 1 I / 
0 2 4 6 6 IO 

d 

FIG. 3. Relative error in 9 for the case of two black walls. 
The first approximation is always higher than the exact 

result; diffusion theory is always lower. 

0, 

d 

FIG. 4. Relative error in q for diffusely reflecting walls (t, = 
c2 = 05). The first approximation is always lower than the 

exact result; diffusion theory is always high. 

always exact in the limit d = 0 and is always superior to the 
first approximation, equation (24), up to about d = 1. For 
d > 1 the two methods give nearly equivalent results with 
equation (24) generally being slightly better. For the tempera- 
ture distribution, the results obtained by approximating 
the integral equation are always superior. 

In conclusion, we have presented a method of arriving at 
accurate, but simple, results for radiative transfer problems 
under a wide range of boundary conditions. It has also been 
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shown that, with the proper boundary conditions, diffusion 
theory can be made to yield results of sufficient accuracy 
for most engineering purposes. 
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